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PASSIVE INFRARED SURVEILLANCE
PART I: MODEL FORMULATION

INTRODUCTION

This paper describes an analytical modei for predicting the performance of a particular
class of infrared sensors generically described as infrared search and track (IRST) devices. An
IRST system generally consists of one or more photodetectors located in the focal plane of a
scanning oplical telescope, and a8 complement of signal processing electionics to process the
detected photocurrents. The signal processor’s task is to determine whether or rot an object of
a particular type (a "target”) is anywhere in the sensor’s field of view, while keeping the fre-
quency of false targel reports to an acceptably low level.

Thus, the Neyman-Pearson criteria conventionally applied to radar systems is appropriate
also as an objective of IRST processor design: the target detection probability (Pp) should be
maximized for a givern maximum tolerable false alarm rate (FAR).

The IRST is a nonimaging device, as contrasted with forward looking infrared (FLIR)
imaging systems {1,2]. The search and track device may be required to keep a full hemisphere
(2w steradians) under constant observation, to have ¢ resolution of one milliradian or less, ani
to operate without human assistance for long periods of time. The challenge this presen:s to
the system designer is further magnified by the abundant opportunities for target/background
confusion offered by such typical background scenes as cloudy skies and cities.

Previous sttempts to model background effects on IRST system performance have focused
on the Wiener spectrum approach [3-9], a frequency domain technique originally developed for
calculating the noise variance in communication circuits. Unfortunately, unlike the noise
processes typically assumed in statistical communication theory (10,11}, the IRST photocurrent
is a highly non-stationary random process. As the sensor scans across a structured background,
the spatially non-uniform scene brightness is mapped into a photocurrent whose mcan and vari-
ance are both functions of time. The inadequacy of the Wiener spectrum method under these
conditions has been appreciated for many years (12,13].

The IRST modetl developed in this paper requires as input complete descriptions of the
IRST sensor and the scene radiance distribution (possibly including a target). As cutput, the
model generates the probability that the IRST device declares (rightly or wrongly) a target's
presence in the sceve. 4 priori knowiedge as to whether a target was in fact present in the
specified scene allows interpretation of the probability of target declaration either as a probabil-
ity of target detection (P,) or as a "false alarm.”

Photon fluctuation noise is the only stochastic aspect of the model; the background must
be specified as a radiance map of arbitrary, but deterministic, structure. Thus, the performance
predictions made with this mode! are background-conditional.

Manuscnpt submutted February 13, 1979
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RICHARD A STEINBERG

Previous works describing analysis techniques for IRST systems (e.g., Refs. 14 and 15)
are restricted in validity to uniform scenes. The contribution of this paper is an original
method for caiculating IRST performance (i.e., the parameters Pp and FAR) that is inherently
applicable to non-uniform scenes. The method described here can be used to assess the rela-
tive merits of a variety of IRST system concepts, all operating against a particular infrared
scene. Alternatively, an IRST sensor’s background-conditional performance can be evaluated
for each member of an ensemble of scenes, in order to establish ensemble aveme performance
statistics for a realistic range of operational environments.

Before launching into the main body of analysis, a treatment of the elementary concepts
involved is first presented in the next section. The latter part of the subsection (Current Statis-
tics) presents a brief discussion of how values for the mean and variance of a photucurrent
(i.e., the "current statistics") are obtained from knowledge of the brightness of a presumably
uniform background scene.

The final part of the next subsection (Crossing Rates for Fixed Threshold Detection)
presents Rice's well-known equation, which is Eq. (9) in this text, for the threshold crossing
rate of a stationary Gaussian random process [16). Evaluation of Eq. (9) requires knowledge of
the mean value and variance of the Gaussian process. A description of IRST performance
against uniform background scenes is obtained by inserting the current statistics from the
Current Statistics Subsection into Rice's equation, Eq. (9).

Rice’s equation, by itself, is devoid of physical content: it applies equally well to any sts-
tionary Gaussian process. All of the physical parameters—the optical and electrical characteris-
tics of the IRST sensor and the radiance of the background scene—are introduced through Egs.
(3)-(5) for the current statistics.

The method described above, using Rice's equation to evaluate search set performance
sgainst uniform scenes, is well known [4,14]. Since a target's presence in the scene would
necessarily render the scene non-uniform, and since the method based on Rice’s equation is
valid only for uniform scenes, Rice's equation can be used to calculate FAR, but not Pp.

The first mathod presented for calculating search set performance against non-uniform
scenes is gisen in the Non-Uniform Scenes Subsection. Although this method is a simple,
heuristic, extension of the well-known uniform background result reviewed in the subsection
on Uniform Scenes, it appears to be original. The heuristic approach of the subsection on
Non-Uniform Scenes has the advantage of being both easy to understand and easy to apply.
Moreover, comparison with rigorous methods indicates that the heuristic method yields numeri-
cally accurate performance predictions as long as the variations in the background scene are not
too rapid [17,18].

The IRST performance mode! developed in the Analysis Section is a rigorous generaliza-
tion o: the Rice equation method. In fact, a point-by-point correspondence can be established
between the simple, well-kncwn analysis of the Uniform Scenes Subsection and the more gen-
eral, new analysis in this report.

P



T TR

«PSX -

1
g
]
i

NRL REPORT 8320

Appendix A generalizes Eq. (3).
Appendix B generalizes Eqs. (4) and (5).

Eq. (55), originally derived by Cramér and Leadbetter {19], generalizes Eq. (9).

As expected, the analysis in this report reduces exactly to the simple Rice equation
method in the uniform background limit. More generally, the method developed in this report
is also appiicable to non-uniform scenes (i.c., scenes containing targets and/or structured back-
grounds).

The techniques developed in this report are applied to the evaluation of a number of can-
didate signal processing structures in a companion paper to the present work (18].

It is noted that tracking aliorithms are neither modeled nor discussed, although they may
play an important role in clutter rejection as well as target tracking (20). Moreover, no con-
sideration is given to the availability of target and backgound infrared radiance datu suitable as
model inputs. No strategics are proposed for synthesizing IRST processor structures to satis{y
either a priori perform :nce requirements or optimization criteria. The contribution of this paper
is the formulation of a performancs analysis model: Complete descriptions of an IRST sensor
and the radiance distribution of a particular scene are required as inputs. As output, the mode!
generates the probability that the IRST device declares (rightly or wrongly) a target’s presence
in the given scene.

SCANNING BLIP SENSURS: ELEMENTARY CONCEPTS
A Basic Threshold Recelver

In order to provide a frame of reference for the following discussion, it is necessary lo
describe a simple IRST receiver structure, and to define the parameters used to characterize
IRST performance.

The probability that the IRST device makes a target declaration when a target is in fact in
the sensor's field of view is called the Probability of Detection (£,,). The average rate at which
false target declarations occur is termed the false-alarm rate (FAR).

A basic threshold comparison receiver is shown in Fig. 1. The current X (1) at the output
of the detector is input 1o an electrical filter of transfer function H(f). The output current
Y (1) of the electrical filter is compared with a threshold ¥,(¢). If Y (1) exceeds the threshold,
the presence of a “target” is declared; otherwise, no target declaration is made. Target detec-
tions and faise alarms are both manifested as threshold crossings, suggesting the following
approach to IRST performance assesament:

o The expected number of threshold crossings that a particular processor experi-
ences against a given infrared scene is first calculated. As discussed in Appendix
C, the expected number of threshold crossings during a given time interval may
be interpreted as a probability of target declaration.

it st ik s
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s
BACKGROUND "
Yit)
Yol | ecvaniisn
THRESHOLD
ves
NO
YARGEY
DECLARATION
CONTINUE
SCANNING
NO TARGET
DECLARATION

Fig | =~ A basic threshold companison receiver. The photodetector in this
figure is “idealized”, in the sense that it is presumed to have a perfeci all-pass
electrical (requency charactenstic, the frequency-dependet part of the detector
responsivily 18 lumped together with the transfer function of the post-deteclor
filter to obtain H{’) A “target declaration” is made whenever the fillercd
current Y (1) exceeds the threshold level ¥, (1)

® If the specified scene is known to contain a target, the computed probability of
target declaration is interpreted as a Probability of Detection (Pp); otherwise, a
Faise Alarm Rate (FAR) interpretation is given.

As will presently be discusscd, it is highly desirable that the threshold-establishing
mechanism suppress clutter-induced threshold crossings by increasing Y,(r) when Y(1) is
“clutter-like."”

Rather than allow Y,(1) to take on an a prior: constant or functional value, it is necessary
to establish the threshold by some means ihat "adapts” Y,(¢) to the prevailing background con-
ditions.

A similar type cof signal processing problem has been addressed in the radar [21,22) and
sonar [23] literatures. A candidate adaptive threshold scheme adapted from the earlier work
[24) is depizted in Fig. 2.

The block with transfer function exp (—,2#/T,) introduces a delay of T, seconds. The
triangular-shaped block in this figure denotes an ideal all-pass amplifier of gain K. Note that
the delay time 7, gain K, and transfer functions H,(/) and H(f) are all design variables.
Strategies for choosing the design variables in order to satisfy particular performance require-
ments or optimization criteria will not be discussed. This report is devoted to developing a for-
mulation for the expected number of threshold crossings for IRST receivers structured as in
Fig. 2, under the assumption that the design variables have all been specified.
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o ] -
i Hit) I yit)

Fig 2 — A simple adaptive threshold scheme s illustrated  The transfer
function exp(- s2m/ T,) introduces a delay of 7, secont'. cnsuring
decorrelation of the random processes Y (/) and ¥, (/) The+  uficunce of
the random currents is seen by inspection of Fig |

exp{~i2nfTy)

Xit)

Uniform Scenes
Current Statistics

Wher the sensor of Fig. | scans across a uniform background scene, the output current
Y (1) is “statistically stationary." The meaning of statistical stationarity will now be discussed as
background to the discussion of non-uniform scenes and non-stationary processes that follow in
the Non-Uniform Scenes subsection.

1t is assumed that the sensor is scanned and re-scanned over the same scene, and that
there are no changes in cither the scene or the sensor from one scan to the next.

The current y{r) during the course of any one particular scan is called a “sample func-
tion™ of the random process Y {(7)  (The process V(¢), in turn, may be thought of as the
infinite ensemble of possible sample functions.) The current sumple tunction obtained on the
n™ scan is designated y(s;n). We now consider a particular one of these sample functions,
v (1 1), depicted in Fig. 3.

The time variations in v(¢;1) have their origin in the time-of-arrival fluctuations of the
individual photons incident on the detector.t Thus, the Quetuations in v (7, 1) are independent
of the scan velocity und are present segardless of whether the sensor is scanning or motionless
The average current at a particular instant of time ¢+, may be defined as the "ensemble average”

\
my(r)= eil!l {-/l\; 2 _v(l,,;n)lE ELYa)). {H

nwwl)

In order for Y (1) to be a stationary process, 't is necessary that m, (1), as defined in Eq. (1), be
independent of time. Thus,

my(1,) = m, 1)),

rt————————
L)

Consintent with 4 consention ol random process theary, stocastic quantities are assghed capital letters, with sample
values designated by the corresponding lower wase letters

'lhn kind of none s olter calfed “photon fluctustion noise” of "quantum aose ” When the quanto m none asacidted
with the background ight s the dommant nose tpe i the semsar the semsor o sad (o be operating i the "Badck
ground L mnted Pedtormanee” (BLID regimie
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yit; 1)

Yo - - S—

Fig. 3 — Three sample functions of the random

yit:2) r current Y(1) are shown as functions of time. The
' current Y(1) is taken at the output of the post-
detector fllter as the sensor is scanned over a uniform

Yo = - - scene (cf, Fig. 1). The sample funclions are desig-

7 nated v(nn), n=1.2,3, ... The sample functions

\/\ display random time variations caused by time-of-

A 1 arrival fluctuations of the individual photons incidem

to \‘,L\‘ on the detector. Since the current Y(1) is stationary,

the cnsemble average mean value (variance) defined

by Eq. (1) (Eq. (2)) is the same at time /, as at time

yit;3) 1), where times 1, and 1, are arbitrary.
Vo - - -

\ l /\/*1’\ -
'0 4 t

where the times 1, and ¢, are totally arbitrary (cf. Fig. 2). Similarly, the mean-square deviation
of Y(r) from its average vaiue (i.c., the "variance" of ¥) may be defined at each instant of time
as

at(t) = Al’im {-;—v- i [Y(;n) - My(l)]zlEE”Y(l)—My'(I)PL (2)
- Nl

The variance o {, like the mean m,, is independent of time for stationary processes.

Equations (1) and (2) are satisfactory for illustrating the concept of "ensemble averaging";
however, it is desireable 1o have a diffecent means for actually calculating the values of m, and
o} in terms of standard background and sensor parameters.

It is first necessary to define the average value my of the current X (1) (cf. Fig. 1):

my = E{X(1)} = nemy, 3)
where
. . electrons
n = quantum efficiency of the detector [“pholon l.

coulombs
electron

e = electronic charge [

¢
i
s 5 o vk

mor e A
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and
mg= average background photon flux Iml:—gﬂ-’?l incident on the detector,

It may be shown that for sensors operating in the BLIP regime the mean value and variance of
Y(1), originally defined by Eqs. (1) and (2), can be calculated in terms of my as follows:

mym= H(O) my, (4)
and {25]

al = 2emyA/, )

where /(0) is the zero-ordinate of the transfer function H(f) (cf. Fig. 1), and Af is the noise
bandwidth of H(f). For bandpass H(f), H(0) = 0. It follows from Eq. (4) that m, = 0 for
this case.

Since the scene is spatially uniform, the average photon flux my, is independent of time.
It follows from Eqs. (3) - (5) that the mean m, and variance o} are also independent of time,
justifying the claim of stationarity for the current Y(1).

Assuming that the transfer function H(f) is normalized as follows:
max H(f) =1, 6

the noise bandwidth A/ in Eq. (5) may be caiculated from the equation:
a7 = f, 1HOIP ar. ™

Crossing Rates for Fixed Threshold Detection

It is now assumed that the signal processor of Fig. | is implemented such that the thres-
hold y, is equal to a constant. The fixed threshold y, is depicted on the sample function plots
of Fig. 3. A brief outline will now be given of a method for calculating the average number of
times m, that the random process Y(r) crosses the threshold during a time interval of duration
T seconds. (The relationship between the mean number of crossings m; and the usual search
set performance parameters P, and FAR is discussed in Appendix C.)

The expected number of threshold crossings m;(0,T) during the time interval |¢| < T/2
may be written in terms of a "crossing rate” n, as:
m,(O.T) - 'iTJT (8)

According to Rice {16}, 7, may be calculated as

m, = my, exp (—u¥/2), )
where
12
thy, = -Al; S f’IH(f)I’d/l : (10)
7

|
NN
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with Af given by Eq. (7). Also,
u=s (yo"My)/G' Y (ll)

with my and oy given by Eqs. (4) and (5).
The quantity « defined by Eq. (11) may be thought of as a normalized threshold level.

It foliows from Eq. (9) that the expected number of threshold crossings drops off rapidly
as the theshold level is increased

Finally, it should be noted that the uniform-background threshold crossing formalism
described above cannot be used to calculate the expected number of threshold crossings associ-
ated with a target’s presence in the scene®, because a target’s presence would render the scene
non-uniform.

Non-Uniform Scenes

Current Siatistics

It is now assumed that the sensor of Fig. 1 is scanned a number of times over the same
non-uniform scene, and that there are no changes in either the scene or the sensor from one
scan to the next. A number of sample functions of the resulting current process Y{/) are dep-
icted in Fig. 4.

Once again, the ensemble average mean and variance of Y(r) are defined by Egs. (1) and
(2). However, as discussed next, Y(1) is now a non-stationary process, i.e., my and o} are
functions of time.

As an illustration of how such non-stationary processes arise, it is now assumed that the
infrared scene encompasses regions of blue cky and clouds where

mg(155) = average photon flux incident on the detector when blue sky is being observed,
and

I"()('( )= average photon flux incident on the detector when cloud is being observed.

The photon flux my in Eq. (3) is seen to be a function of time: m(r) takes on the value
my(i;) at a time 1 when a cloud is in the field of view, and it takes on a different value
mg(1ys) at a time fyy when the scanning ficld of view includes only blue sky. Thus, the process

Y (1) is non-stationary when the scene is non-uniform, because the mean and variance of Y (1)
are seen from Egs. (3)-(5) to be functions of timet.

L] v . L)

As discussed in Appendix C, the incremental number of threshold crossings associaled with a target’s presence in the
scene provides an estimate ol the conventional search set paremeter P By definiton, Py 1 the probability of Larget
detection

Yeor the present. it suffices 10 say that the forms of Eqs (4) and (5) indicate that a ime-varying my must give rse 1o
time varying my and oy However, it should be noted that Eqs (4) and (§) are only strictly valid for stavionary
processes, 1¢, for ume-invariant my Generalizations of Egs (4) and (5) valid for both stationary and non-slalionary
processes are given by Egs (B-30) and (B-31)
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yit:1) M./

Fig. 4 — Three sample functions of the ran-
dom current Y (1) are shown as functions of

time. This figure is similar to Fig. 3, except
the sensor is now presumably scanned over vl //
a non-uniform scene The time-varying '

V4

ensembic average my(r) of Y (1) is shown as
a dashed curve superposed on each of the {
three depicted sample funclions (sohid / !
curves). The ensemble average my is siill ~ /

defined by Eq. (1); however, the fact that - —
m, is now a function of time imphes that

¥(:) is now a nonstationary random pro-

cess.

\

yit:3) /4

The time-varying mean value m (1) is superposed as a dashed curve on each of the sam-
ple functions y (1) depicted in Fig. 4.

Crossing Rates for Fixed Threshold Detection

The performance of a fixed threshold signal processor (cf. Fig. 1) against a non-uniform
scene can be characterized in terms of the quantity m,, where*

m\0.7) =EW)= f, (0, (12)

where T, is the time interval || < T/2, Jis an integer random variable equal to the number of
times that the current Y(¢) crosses the threshold level y, during the time interval 7, and E{.)
is the statistical expectation operator as defined in Egs. (1) and (2). Equation (12) is a straight-
forward generalization of Eq. (8) to allow for the possibility of time-variable threshold crossing
rates m;.

As long as the time variation of m (1) is slow compared to the time variation of the
impulse response /(1) of the post-detector filter (cf. Fig. 1), a good estimate for #,(r) can be
obtained from Eq. (9).

‘of Appendix C for a discussion ot the relationship of niy (0, 7) to the usuad IRST perlormance parameters 7 and
FAR.
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The following steps are then followed in calculating m,(0,7):

a. The time-varying mean current my(r) is derived from the time-varying photon irradi-
ance my(r) by means of Eq. (3). (A detailed formulation for my(t) in terms of the back-
ground radiance distribution is provided in Appendix A.)

b. Estimates of my(¢) and o }(1) are obtained from Egs. (4) and (5), (More rigorously,
Egs. (B-30) and (B-31) may be used to obtain my (1) and o #(1).)

c. Equation (11) is evaluated for the time-varying normalized threshold v (7).

d. Equation (9) is evaluated for the time-varying threshold crossing rate ri1,(1) .

e. Equation (12) is evaluated for the expected number of threshold crossings m,(0, T) .

Numerical examples following the above prescription typically show that the crossing rate
function m,(1) is extremely sharply peaked (cf. Fig. S). Consequently, appreciable contribu-
tions to m;(0,7) only accrue in the near neighborhood of points such as 1, in Fig. 5. It is

shown in Ref, 17 that the time ¢, in Fig. 5b is a saddle point of the crossing rate integral Eq.
(12), and that Eq. (12) may be approximated asymptotically as:

mJ(O, T) = I;P_/(l,,) 6!,,. (13)

with m,(1,) obtained from Eq. (9). The quantity 81, is the effective interval of time during
which my(¢) remains in the near neighborhood of its peak value, from the standpoint of cross-
ing rate calculations. An expression for 81, is derived in Ref. 17.

The implications of Eq. (13) for system performance are illustrated with the aid of Fig. 6.

m{t)

Yo 4 - - _—

Fig § — Part a) 1s an illustrative plot of my (1) vs 4,
where my is the mean value of the fiitered current
(1 Iso shown 15 ¢ ant threshold current
N\ R ey Y1)  Also shown 1s a constant threshold curre

‘l *? v,+ lying above the peak value of m, The function

\j p \/ my (1) takes on uts peak value at the time ¢,
Part (b) 1s a plot of the threshold crossing rate
(@) :;1,(1) corresponding to the threshold v, and mean
current my (1) of part (a). The entire coninbulion
1o the crossing rate integral, Eq (12), accrues in the

very near neighborhood of 1,

m i
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m,(t)

to

Fig. 6 — This figure illustrates a critical shortcoming of constant
threshold processing. The slowly varying muximum centered at 4,
presumably has its origin in \he non-uniform background scene. The
narrower, lower amphtude spike centered at , 18 due to a target.
The likelihood of a false alarm (i e.. a clutter-induced threshold cross-
ing) grows rapidly as the threshold level v, is reduced There 18 no
way for the constant threshold processor to detect the target peak at
1, without also incurring a false alarm ansing from the clutter peak
cenlered at 1,

A plot of the threshold crossing rate fn,(t) corresponding to
thiy figure would show that the probability of a threshold crossing,
and hence a false alarm, is far greater at time 4, than at any other
time

The large, relatively slowly varying maximum centered at 1, in Fig. 6 is presumed to have
its origin in the background scene. The narrower, fower amplitude spike centered at 1, in Fig. 6
is presumed to be due to a "arget.”

It follows from Egs. (13) and (9) that the likelihood of a clutter-induced threshold cross-
ing grows rapidly as the threshold level y, in Fig. 6 is lowered. A clutter-induced threshold
crossing (i.e., a “false alarm") becomes a virtual certainty® when there is a "mean-crossing,” r.e.,
when the threshold level actually intercepts the mean current m,(s). [17,18] There is
apparently no way for the constant threshold processor to detect the target peak at 1, without
also incurring a false alarm arising from the clutter peak centered at ¢,.

Crossimg Rates fir Constant False Alarm Rate (CFAR) Adapuive Threshold Detection
The performance of an adaptive-threshold processor 1s illustrated with the aid of Fig. 7.
The processor is presumed to have some means for deriving high-confidence estimates for

m, (1) and a (1), defined as 11, and ,, respectively. When m, (1) is "slowly-varyving” the pro-
cessor establishes y, (1) as:

v, () =, (1) + Ka, (1), (14)

.Thts his been established by integrating the crossing rate function fn, over an interval of time containng 4 time point
f 10F Which oy () = &, An asymptotie analysis (cf Ret' 17) has shown that 'he crossing rate integral g (12) 4
incremented by unity tor cach such ume ¢, contwned in the interval of mtegration 7, This result s not at all surpris-
ing. and may ue taken as evidence that the theory developed here s consistent with common sense

11
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my(t)
. Jto(t)
L \\\\
t, NS t

Fig. 7 — This figure illustrates an important potential
advantage of adaptive threshold processing. The mean
current my (1) is the same as for Fig. 6, with a clutter peak
centered at time /,, and 4 lower-amplitude target spike cen-
tered at time +,. The adaptive threshold v, (1) is presum-
ably sble 10 accurately track the slowly varying background
signal, but not the more rupidly varying target signal.
Thus, target detection is ussured, while the probability of a
false alarm is kept acceptably small  As contrasted with the
situation of Fig. 6, the probability of a false alarm 18 now
ne greater in the neighborhood of time 1, than at any other
time.

The threshold is interpolated through periods of “rapidly varying" m, (1) by means of a smooth-
ing filter (cf., for example, the neighborhood of 1, in Fig. 7). The adaptive-threshold constant
K in Eq. (14) is a design parameter,

From Egs. (11) and (14},
w@t) = K{a, (1Mo, (D} + iy (1) = my (D /o, (1) a1s)

When the cstimation errors are sufficiently small,
a,(1) = (1), (16)

and
my (1) = m, (1),

it follows from Eg. (15) that
u() = K. an

Thus, u(r) is rendered time-invariant by the adaptive-threshold processor when there is no
rapidly-varying target contribution to m,(1). When there are no targets in the scene, the mean
current m, (1) is assumed to be slowly-varying, and the expected number of crossings during
the time interval 7, may be calculated from Eqs. (9), (12), and (17) as

m0. T) = [, s, exp (=KD . (18)

Since both s, and K are time-invariant, Eq. (18) becomes
mi0, T) = m,, exp (—K¥/2) T. (19)

Equation (19) has the same form as the crossing rate expression for uniform scenes, Eq. (8).
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The kind of processor just described has been called a constant false alarm rate (CFAR)
processor, since the threshold crossing rate is now independent of time, i.e., a crossing is no
more likely to occur when scanning a region of non-uniform background than when scanning a
region of uniform background. For example, with reference to Fig. 7, the crossing rate is now
no greater at /, than at any other time.

Unfortunately, the CFAR processor is generally a non-realizable ideal: it has been
assumed that the processor is able to estimate the quantities my(r) and o y(1) to as high a pre-
cision as desired. Errors in the estimated values for my and o y are usually unavoidable, giving
rise to appreciable time-dependence in Eq. (15) for 4 (1),

ANALYSIS
Introduction

The objective of the next subsection is to present an expression for the expected value of
the number of times a nonstationary noise Y(/) crosses a nonstationary stochastic threshold
Y. (1),

The crossing-rate formulation that results, Eqs. (25) and (27), requires knowledge of the
joint density function Srwy, v, of the current Y (1), its time derivative Y(r), the threshold Y,(1),

and its time derivative Y,(r).

As discussed in Ref. 17, the currents Y(1) and Y,(¢) are non-stationary Gaussian
processes. It follows that Y (1), Y (1), Y,(1), and Y,(1), are jointly Gaussian processes. The
joint density fy,, ; can thus be expressed in terms of a covariance matrix A ,

Assuming that the filtered current Y(1) and the threshold Y,(r) are uncorrelated
processes, the fourth-order density function factorizes into

Srevi, =Sy fyyyys (20)

The justification for Eq. (20) is discussed in the next section. Expression (52) for the jointly
Gaussian f,; is then used with the general crossing rate Expression (48) to derive a more
explicit crossing rate expression, Eq. (55). Evaluation of Eq. (55) for m, requires the expres-
sions derived in Appendix B for the time-varying current statistics o (1), o y(¢), and r(¢) (cf.
Eqs. (B-30) - (B-34)).

The complete expression for the average crossing rate, Eq. (47), generally requires the
numzrical integration of a somewhat complicated integrand. The section called Crossing Rates
for Adaptive Threshold Processors is devoted to deriving an approximation to Eq. (47). The
result, Eq. (67), is the principal analytical result of this report.

A Basic Equation for Curve Crossing Rates

The integer random variable J is defined as the number of zero-crossings of a random
process G(t) on a time interval |t| < 7/2. The expected value of J is defined as m,(0, T).
Thus,

m;0, T) = E{J}, 1

13
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where E{.} denotes an ensemble average. Defining the crossing rate function (1) as in Eq.
(12), it can be shown that (cf. Ref. 26, p. 514)

i) = f18|foq 0.8 d. 22)

The function fg; in Eq. (22) is the joint probability density function of the process G (/) and
its time derivative G(1).

Equation (22) is well known; however, most references to it appear to impose a stationar-
ity requirement on G that is not actually necessary. The applicability of this equation to nonsta-
tionary processes appears to have first been recognized by Cramér and Leadbetter [19].

The domain of integraticn in Eq. (22) is a matter of some interest. If one wishes (o cal-

culate only the expected number of positive slope zero-crossings, i.e., the expected number of
times that both

G(t) =0 (23)

G(t,) >0 (24)

are both satisfied on the interval |7| < T/2, the lower and upper limits of integration in Eq.
(22) should be chosen as 0 and oo, respectively. The resulting expression for m,(0, T),

my(0,T) = f,“ dr [ N Iélfcc(O.é)]. (25)

does not include zero-crossings of the type depicted in Fig. 8, for which ¢ < 0. Apparently, m,
is sensitive only to the "right type" of zero crossing, as defined by the limits of integration in

Eq. (22),
glt)

Fig 8 — A sample function (1) of the random process G (1) is dep-
icted as a function of lime. The parucular sample funcuon chosen
has a down-crossing at time 1,

14
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The process G(t) is now assumed to be formed as the difference of two stochastic
processes Y(¢) and Y, (¢). Thus,

G() = Y() ~ Y (n), (26)
where Y,(r) is referred to as the "threshold process”. Without making any assumptions with

respect to the statistics of Y(¢) and Y,(r) (e.g., each process may be both nonstationary and
non-Gaussian) it follows from Eq. (26) that

Jec©8) = [ [dtan fyiy @i + 0w (27)

The proof of this equation is straight-forward (cf. Ref. 27, p. 131). Assuming that the
processes, V.Y.Y,, and Y,, are jointly Gaussian (cf. Ref. 17 for justification), their joint density
can be expressed in terms of their covariance matrix [27] A. The matrix A has four rows and
four columns, for a total of sixteen elements. Written in partitioned form, we have

c ¢/

where the superscript T denotes the matrix transpose operation. The submatrices C, C,,, and C,
are defined as

c-{ P10 ny(l.l)l

Ciy(t) a3 (29)
c fln(') CV«: "'a("’)
Co - Cyny.('.') azy.(') N (30)
and
Cy,v(11) Cy"y(l.l)
CI - CY‘,Y("') Cy”y('-’) . (3‘)
The scalar covariances that comprise thesc elements are defined by
Caslint) = 2{[‘ (r) - M4('|)] [B(fz) "I"g('z)ll. {32)
where A and B take on the values Y, f’. Y,, and )"... as appropriate. Also,
my(1) = E(4(1)) (33)
and
al(1) = Caaltt). 34)

It follows from Eq. (32) that Cy,(n1) = Cyy (1) and Cy (1) = Cy y (11). Thus, the
matrices C and C, are symmetric.

15
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The elements of C are obtained directly from Egs. (B-17), (B-20), and (B-23);

e }(1) = elmy(r) ® H¥(1)}, (35)
a3(11) = elmy(n) @ [h(D]), (36)

and
Cyi (1) = a (1) o y(1), 37

where e is the electronic charge, 4 (r) is the impulse response of the post-detector filter (cf.
Fig. 1), my(1) is the mean value of the current X(¢) (cf. Fig. 1), and @is the convolution
operator:

00 g = [ ru-0gx)ax. )
The relationship of my(1) to the radiance of the scene under observation and the optical

parameters of the IRST sensor is discussed in Appendix A, and expressed quantitatively by Eq.
(A-2).

Expressions for the elements of Eq. (30) may be obtained as direct adaptations of Eqs. (35)
(37). It follows from Fig. 2 that
Y, (1) = Kh,(1=T) ® X(1), (38)
where #,(r) is the Fourier inverse of H,(f). Taking the expected value of both sides of this
equation, we have
Myn(l) - Kh,,(l—T.,) ® Mx('). (39)

which is analagous to Eq. (B-30). It may also be shown, analagous to Eqs. (35) - (37) that:

ol (1) = eKmy(1) @ h}(1-T), (40)
@} (1) = eKmylr) @ A, =TV, 1)

and
C)'" y"(l.') - y"(') o y"(l)- (42)

It remains only to formulate similar expressions for the elements of C, in order to complete the
specification of the joint density f,;, ; -

Assuming that the processes Y (t) and Y,(r) are both derived from the process X (r) by
means of the structure shown in Fig. 2, it is shown in Ref. 17 that, if

h,(t=T) h(1) =0, (43)

then
C| - 0. (44)

That is, choosing a sufficiently iong time delay T, in Fig. 2 validates the factorization of the
fourth order density fyy, , into the product of two second order densities:

fyyy“ Y, (yv.‘.}'yu'ju) - fyy (.Vo}.’)fy" Y, (yu-).’o)' (45)
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From Eqgs. (22), (27), and (45),

(1) = ffd{dn Sy y, &m) [fdg'lélf" (C,g’+n)}. (46)
With the change of variable z = ¢-+y, Eq. (46) may be written
(1) = Ey . lzh,(rly,.,j’,,)}. 47
where, by definition,
'hl('lymj’n) = J: |z—j),,|fyy(y,,.z)dz, (48)
and "
E,y W= [ fdean s, , @m ) (49)

The quantity my, previously interpreted as the zero-crossing rate of the process G (cf. Eq.
(22)), is now interpreted as the threshold crossing rate of the process Y (1) (cf. Eq. (47)).

The quantity
'ﬁ;(ll)’m.l.’u) = ""J(”') (50)

defined by Eq. (48) will be referred to as the "threshold-conditional crossing rate."
Non-Stationary Gaussian Processes
Further development of Eq. (48) for the threshold-conditional crossing rate is contingent

on obtaining a suitable expressinn for the joint density f,;. Thc objective of this section is to
cvaluate Eq. (48) for the particular case of a bivariate Gaussian density, Eq. (52).

The justification for assuming a Gaussian distribution for /) (+nd hence for f; and f,, as
well) is discussed in Ref. 17. As shown in Ref. 17, th: relative errcr in sy is approximately
equal to the relative error € in the density function of Y (1)

S =oi'é l-y—}"-’- (1 + o), (s1)

where ¢ (.) is the Gaussian density function, Eq. (§7). The Edgeworth series expansion (16} of
Jy(») provides a simple and essily evaluated expression for the relative error . Sample calcu-
lations described in Ref. [17]) show that € is negligibly small for typical system and background
parameter values. Thus, the joint density fy; is now assumed to have the following bivariate
normal form:

-1
Fry(.2) = {Zmr ya/(l-rz)”zl exp l-— (52

ul+v:i—2ruv
20-r) '

where the quantities my, oy, o 2, and r, are obtained irom Eqs. (B-30) - (B-34). Also,

(RN
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and
vEG-myle,. (54)
Substituting Eq. (52) into Eq. (48), it may be shown that [17]
my(tly,.n,) = l-::—z-l A=) ¢(u) (&(p) + po(p)), (55
Y
where, by definition:
-1
pPE l(l—r’)'/2 o-,,l (m;, + rue,-y,). (56)
The functions ¢(.) and ®(.) in Eq. (55) are defined as follows:
o(x) = Q27) V2 exp(=x¥/2) (57
and
o) = [ s()ez (58)

The crossing rate Eq. (5$) is originally due to Cramér and Leadbetter [19).

Equations (47) and (55), together, represent a formal means for calculating the mean threshold
crossing performance ¢ the adaptive threshold processor depicted in Fig. 2. However, the
evaluation of Eq. (47) appears to present some significant calculational difficulties. These
difficulties are obviated by means of the approximate method of evaluation pursued in the fol-
lowing section.

Crossing Rates for Adaptive Threshold Processors
Numerical results obtained thus far indicate that the correlation coefficients » and r, are
typically much less than unity, as follows:
lr ()} = 1Cyy (1) Lo (D (D]7'] << | (59)
and
] =|C, , (LD la, (1) o, O] << 1, (60)

where Eq. (59) comes from Eq. (B-24), and Eq. (60) is obiainec by analogy to Eq. (59).

It follows from Eqs. (47) and (49) that the threshold crossing rate for stochastic threshold
functions Y,(1) may be written as

o0

m1) = f [didn i\t m sy , Qo). (61)

-0

Equations (59) and (60) permit considerable simplification of the functions appearing inside the
integral in Eq. (61).

g




A g ) S T I

W rmen A

NRL RI‘PORT 8320

From Eqgs. (55) and (59):
my(t]g.m) = [-glld:(u)ld:(p) +p0(p)}, (62)
Y

where u, ¢(-), and ®('), are given by Eqgs. (53), (57), and (58), respectively. From Eqs. (56)
and (59),

pe (ml—n)/uz.‘ (63)

By analogy with Eq. (52), and making use of Eq. (60),

fy“ y“(Co'ﬂ) - lcr ;ﬂ' ¢(u,,)] l(r,f“' d;(p,,)], (64)
where u, and p, are defined similarly to Eqs. (53) and (63) as
u, = ~my)loy (65)
and
po = (my ~{ley,. (66)

1t follows from Eqs. (61) - (66) and some algebra that

@,y My -m
1) = 2m) 2 ”“las ' « L\ Fim, —m),). (67)
Ty, oy, ‘

where, by definition

ofy =al+af (68)
and

o },J Ealta f, (69)

The quantities m, (1), o, (1), and o ,”(I). in Egs. (67) - (69) are calculated by means of

Eqs. (39), (40), and (41), respectively. Finally, the expected number of threshold crossings in
a time interval 7, may be obtained as

m 0, T) = 7[ (1) di, (10)

with m, (1) given by Eq. (67).
Equation (67) provides the basis for analyzing a much broader range of possible adaptive

threshold schemes than Fig. 2 might suggest. For exampie, straightforward generalizations of
Eq. (67) may be applied 10 the structures depicted in Figs. 9-11.

19




1o e s v o S M A 4y

AR A 4 s ht A £ T SBATAATS 0L be

RICHARD A. STEINBERG

Holf) | Y,lt)

X(t) DELAY ~s{ DELAY
b

HIf) e Y(8)

Fig 9 «— An aduptive threshold scheme s illustruted. Each
of the delay elements intiroduces a delay of I, seconds.
The significance of the random currents V() Y (), and
Y, (1) is seen by inspection of Fig. {. The block disgram
shown here s uctually just one part of the threshold pro-
cessing receiver shown in Fig |

1 N N :]
Xit) peLAYHS L] DELAY Tﬁ«u DELAY

HIf) = Y(1)

b 10 — A candidate adaptive threshold scheme s allus-
trated  that gencrahizes the structure of Fig. 9 The
threshold-cstablishing approach shown here 18 realized in
terms of a tapped delay hne with 2V apy Onge apain, the
sigificance of VO), M), and )0 follows from Fig 1
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Y (1)

t 1

Hylf) Hylf) [Hzn -1 Hanif)

1 L N L 2N —1
X(t) —Le DELAY -}} DELAY [+{( - DELAY

Hf) e Y(1)

Fig 11 — The tapped delay hnc adaptive threshold scheme
shown here generalizes the structure of Fig. 10. The transfer
functions /,(1), n=1,2. . 2N at each of the 2V taps of the
tapped delay line are design variables, chosen 1o maximize the
receiver's performance aganst a particalar background scene, or
set of buckground scenes  There is no ¢ priors reason why the
various delays should be chosen as equal to one another, other
than for fabricutional simplicity. More generally, additional
degreer: of freedom are incorporated by allowing these delays to
take on distinet values.

While the function F(m, —m,) in Eq. (67) is fairly complicated. iis zero-ordinate is
unity:
F(O) = 1. (1)

Equation (71) is a highly desireable feature, as explained in the next section.

It is noted that for uniform backgrounds,*

(o) /o)) = (AL,/AS) (72)
and !

(r) fo)) = (81,741, (13)

where A/ is the noise bandwidth of H(/), and Ay, is the noise bandwidth of #,(f) (cf. Fig.
2). I follows from Egs. (68), (69), (72), and (73) that

"%)“ =a} ll+ (Al;,/A/‘)} 74)
and
0}, % a} {H (Af../Af)’}. s

.Eq (73) 15 derved by assunung o rectangular-shaped H(7) having an upper cut-off frequency /, and a none
bandwidth A7 -~ ¢,

21

o b < - T MO R MO RSN

T P e A o Nk




P < 2ad

RICHARD A. STEINBERG

Equations (74) and (75) are good approximations so long as my(r) is slowly varying compared
to (1) and h,(1).

DISCUSSION

Experience with the numerical evaluation of Eq. (70), with m,(r) given by Eq. (67), has
shown that the principal contributions to the integral m, of m, accrue in the neighborhood of a
discrete set of times.

Moreover, it has been shown that these important discrete times are of two lypes:
"mean-crossing times,” and "times of closest approach” [17].

Mean-crossing times 1,, satisfy the following two conditions simultaneously:
m,»(l,,,‘) - m,“(l,m) (76)

and
'h)(’m() > ""P‘“(’nu)" (77)

For each solution of Eq. (76) that satisfies constraint (77), i.e., each time the mean current
m) (1) crosses the mean threshold m, (1) with positive slope, the expected number of crossings
my is incremented by unity. Whenever mean-crossings exist during the interval T, it is gen-
erally not necessary to perform the integral of Eq. (70): in this case, the expected number of
threshold crossings m,;(0O,T) is well-approximated by the number of mean-crossing times /,,
during the interval 7,. Clearly, it is desireable that no mesn-crossing times exist except when
there is a target in the scene, this may be taken as a reasonable first principle of search set
design for operation against structured backgrounds.

I m)y (1) lies below m, (1) on the time interval 7, i.e., il there are no mean-crossings

during T, the crossing count integral Eq. (70) is generally yominated by contributions accruing
in the neighborhood of “closest approach times” 1, where by definition

mylt,) = m, it,) (78)
It follows from Egs. (67), (71), and (78}, that the mean threshold crossing rate for adaptive-
threshotd (AT) processors is
T my —m,

oy
g =Qm) " l—"leé |—— (719)

Ty T

in the neighborhood of all closest approach times. Thus, the complicated function /(-) appecar-
ing in Eq. (67) is generally not needed in evaluating Eq. (70).

Analogous to Eq. (79), the mean threshold crussing rate for fixed-threshold (FT) proces-
sors is given by

ity 1 (1) = 1yt |0, 0) = Q) 12 l‘—:-’ l ¢ ll"—'"-’-‘. (80)
}

oy
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Equation (80) is derived from the background-conditional crossing rate, Eq. (62), by imposing
a saddle point condition analagous to Eq. (78):

p= (m,_ —}.;,,)/0’/"'0. (81)
Alternatively, Eq. (80) may be derived by noting that for fixed threshold processors:
af -a'}. =0 (82)
and
I"y.. = Y. (83)
From Egs. (68), (69), and (82),
o ;y“ = (Y% (84)
and cr}z" =) (85)

for fixed-threshold processors. Substituting Eqs. (83) - (85) into Eq. (79), the adeptive-
threshold crossing rate i, is seen to reduce properly to the fixed-threshold crossing rate m,
given by Eq. (80).

The advantages and disadvantages of adaptive threshold (AT) processing vis-d-vis fixed
threshold (FT) processing may be evaluated by comparing the crossing-rate expressions in Egs.
(79) and (80).

It follows from Eq. (80) that fixed threshold processors will suffer background-induced
mean-crossings whenever the peak target amplitude is less than the clutter amplitude. This
situation is depicted in Fig. 6. Thus, it may be said that target-to-clutter ratios less then unity
cause the FT processor performance to be "background-structure-limited” (BSL). In this case,
each "false alarm” can be associated with a structural featuve in the backgound. The effect of
quantum noise (as reflected in the magnitude of « ,, for example) is then totally overshadowed
by background structure effects.

Inspection of Eq. (79) and Fig. 7 shows that an Adaptive Threshold (AT) processor need
not suffer background-induced mean-crossings. If the filter /7,(/) (cf. Fig. 2 ) can be chosen
such that m, (1) "tracks® the background-induced variations in m, (1), the background-induced

mean-crossings can be eliminated.

Such false alarms as then occur are distributed randomly in time, and are not associated
with particular features in the background scene: the residual false alarms are due to quantum
noise. An IRST sensor operating in this regime (e.g., Fig. 7) is said to be "quantum-noise-
limited" (QNL) in its performance. Clearly, QNL (quantum-noise-limited) operation is
preferable to BSL (background-structure-limited) operation.

It should be noted that the adaptive thresheld performance advantage just described is

only realized when the background scene is non-uniform. The performance of AT processors is
generally inferior to the performance of FT processors when the background scene is uniform
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and of known brightness. In this case, the adaptive threshold false alarm rate (FAR,;) is

greater (i.e., worse) than the fixed threshold false-alarm rate (FAR/y):
FAR,; > FARr. (86)

In urder to make the false alarm rate comparison above meaningful, it is assumed that the
adaptive-threshold gain K in Fig. 2 has been adjusted to achieve equal target-detection sensitivi-
ties for the two processors being compared.*

A false-alarm penalty (FAP) is now defined:
FAP = 10log,g (FAR, 7/ FAR:y). (87)
The false-alarm penalty is a measure of the performance disadvantage that accrues when an AT
processor is used when it truly isn't needed. Eq. (87) may be written as
FAP = 10log;o l""AT/".’I"T} dB. (88)
with m,r and 1, given by Eqgs. (79) and (80), respectively. The evaluation of Eq. (88) is

simplified considerably by making use of Eqs. (74) and (75). It follows from Eqs. (74), (75),
(79), (80), and (88) that:

PR Y
FAP = 2.17|-5 - + Slogyo [1~a(1-a)]. dB, (89)
1+a oy
where, by definition,
.Y}
= |—|. (90)
.= |t
Equation (89) simplifies still further in the limit a <<1. Thus
?
My“"'my
FAP % 217 « - -—ll dB .a<<l1, (1))
¥

As an example, il is assumed that the threshold-constant K in Fig. 2 is adjusted until * the
threshold is five sigmas above the mean,” i.e.,

m,“—m,
=5 (92)

T)

when the search set is observing a uniform scene of known brightness. Furthermore, it is
assumed that the noise bandwidth of the target filter H{/) in Fig. 2 is twice as large as the
noise bandwidth of the threshold-setting-filter #,(/),

o= lé-’w] - % (93)

L]
I assumed that the threshold Gilter 17,07) responds too slowly ta suppress Last oise-time target-induced threshold
CrONSINES
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It follows from Eqs. (89), (92), and (93) that the false alarm penalty is ¢

FAP = 17,46 dB, (94)

corresponding to a value of FAR,; ( adaptive threshold false-alarm rate) about 56 times worse
than FARy (fixed-threshold false-alarm rate).

Generally, A/, should be chosen smaller than Af to both minimize the false alarm
penalty, (Eq. (89)), and to prevent a too-rapid threshold response that would tend to suppress
target-induced threshold crossings. On the other hand, A/, should be chosen large enough to
allow the threshold to accurately follow most of the structure in the background scene, Clearly,
the choice for A/, involves degrading system performance ugainst uniform backgrounds for the
sake of improved performance against non-unifurm backgrounds.

It appears likely that a more favorable trade-off could be achieved with the receiver struc-
ture shown in Fig. 9, both from the standpoint of (a) decreasing the false alarm penalty, Eq.
(89), and (b) improving the background tracking properties of my (1). Equation (79) and the

entire analysis of the preceding section is casily adapted to the structures of Figs. 9-11. The
false-alarm penalty, Eq. (89), decreases roughly as (2N) "2 for the detector of Fig. 10. The
improvement in uniform background performance thus obtained for large values of N is gained
at the expense of degraded performance against cluttered scenes, as compared to detectors with
small values of N. The good background-tracking cupability of the structure in Fig. 9 combined
with the low false-alarm penalty of the structure of Fig. 10 can be obtained by employing a
two-dimensional-detector array with time-delay and integration (TD1) logic.

In order to put this discussion on a concrete quantitative basis, particular background and
target radiance distributions must be chosen, and the mean current m, (1) calculated by means
of Eq. (A-2) in Appendix A. The target detection and clutter rejection capabilities of a given
candidate adaptive-threshold processor can then be analyzed by means of Eq. (79}, Intercom-
parisons of the numerical results thus obtained for a variely of different processor structures
should then allow guantitative conclusions to be drawn concerning such issues as;

o The performance penalty caused by failing to match the sensor’s instantaneous field-
of-view to the angular size of the target.

¢ The potential performance advantages of time-delay and integration (TDD.

¢ The best value of N, and the desireability of having different transfer functions #,(/)
for each of the 2N taps in the tapped delay line structure of Fig. 11.

® The advantages that may be gained by employing two-dimensional threshold process-
ing, in which the “target signal® Y (/) and threshoid function Y,(s) are derived from detectors
scanning at different elevations.

The only important obstacle to performing analyses of the kind described above is the lack
of high-spalial-resolution, radiometric, infrared background imagery.
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Appendix A ,
CALCULATING THE AVERAGE PHOTOCURRENT ’f
FROM BACKGROUND DATA :

The objective of this Appendix is to present Eq. (A-2), which expresses the average value 3
of the random current X{¢) (cf. Fig. 1),

my(r) = E{X (1)}, (A-1)

as a function of the scene radiance distribution m, (r) and a number of important sensor param-
elers.

4 TN

As derived in Ref. 17,
my(1) = KR, [ MTF(D 2 (D mo(D) exp G2l v1) . (A-2)

The various quantities appearing on the right-hand-side of Eq. (A-2) will now be defined.
The constant X, is given by

K“ -1 fu/(z.,‘)zo (A'a)

where 7, is the transmittance cf the optics, and /¥ is the focal length ratio of the optics.

The constant R, is the current responsivity, given by:

R, - m’/hu. (A-4)

where 7 is the detector quantum efficiency, e is the electronic charge, / is Planck's constant,
and » is the average optical frequency of the incident light.

The variable of integration in Eq. (A-2), f, is the two-dimensional vector spatial fre-

quency. The quantity MTF(f) is the modulation transfer function that characterizes the image
blurring effect of the optical train, normalized such that
{ MTF(0) = 1. (A-S)

For the detector geometry depicted in Fig. Al, the quantity P(r) is defined as follows:

i
1 re @
P(l') - 0 re¢ adu B (A'G)

s,
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The function P(f) is defined as the two-dimensional spatial Fourier transform of P(r):

20 = [ P expti2nt-ndr. (A

Similarly, m_(f) is the two-dimensional spatial Fourier transform of the radiance distribution
m,; (¢). It should be noted that m, (r), like m\ (1) in Eq. (A-2), is an ensemble average value
over the photon fluctuation statistics of the incident light.

The radiance distribution m, (r) is characteristic of a particular infrared scene, and may be
estimated by means of a radiometric Thermal Imaging System [1.2] (TIS) of higher spatial
resolution than the model system. It is also highly desirable that the dwell time of the TIS be
much longer than that of the model system, since the analysis requires knowledge of the mean

radiance of the scene established by averaging over the photon fluctuation statistics of the
incident light*.

The spectral filler chosen for use with the TIS should match the combined TIS optical
train/photodetector spectral response 1o that of the model system. This is necessary because
there is no way to reliably calculate the radiance of a scene measured in a waveband A, in
terms of the radiance of the same scene measured in a different spectral band AA,.

The quantity v in Eq. (A-2) is the focal plane scan velocity, which may be calculated as

|v| =2=/* D,/T,. (A-8)

where D,, is the diameter of the optical aperture, and 7, is the system frame time.

.
Averaging aut the photon noise by either increasing the TIS dwell tnie or by pertoeming frame addition decreases the
nowsiess of the TIS image, and unproves the goodness of the TIS imagery as an estimate of oy ()
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Appendix B
NOISE CURRENT CORRELATION FUNCTIONS

The object of this Appendix is to derive Egs. (B-30) - (B-34), which are needed to evalu-

ate Eq. (55) for the threshold crossing rate s, (1]y,, y,).

‘The starting point for this discussion is the linear system input/output relation between

the random processes X (1) and Y (1) (cf, Figure 1):
Y(1) = fm du X(u)h(r—u).

1t follows directly from Eq. (B-1) that
('”(“. /1) - ff'm dud: ('N(A".“’) /l(""k) /I(lz"ﬂ-).

where the covariances ('), and 'y, are defined by
Cyy () = KLY () =my D LY G)=my G,
Coaw) = CHXYN) —m DX () =my(w)]),
and where

my (1) = E{Y(D}.
and

m (D) = EIX()).
With the definition _
20y =¥YW),
it follows from Eq. (B-3) that
(')/('l» l;_;) = 6,2 ‘(“H(’I' 12”
and
Copltyi 1)) = 6,|8,2‘('n(l|. 12”-‘
From Egs. (B-2), (B-8), and (B-9),
G, 0) = ffm dudh Cyo(A, 1) hity =) 6,211(12—;4)

and

\ '//(ll. 13) = ffi dudi ('H(A,u) B,Ih(l, -A) 6,211(12—;;);

Setting 1, =1,=1in Eqs. (B-10) and (B-11), and noting that
Cop, 1) = a2) = E{ZN0D) - m}),
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it follows that

Cratt ) = [~ dudh CoxOh, ) h(t=N) 8,4 (=) (B-13)
and

o3() = [ dudh Coxh ) 3,00 =2) 8,80 =), (B-14)

Setting 7, = 1,=rin Eq. (B-2), and noting that
Cyy(1,0) = a (1) = E{Y}()} = m{(1), (B-15)
it follows that
cb () = [ dudn Coxh mdn( =M (-p). (B-16)
An expression for Cyy(A, u) is now required before the analysis can be carried any
further. An adaptation of Eq. (4.3.13) on p. 115 of Ref. 28 leads to:
o} () =e [ du b2 -p) mylu). (817
where e is the electronic churge. Consistency between Egs. (B-16) and (B-17) requires that
(‘y((h, ﬂ) - ¢ mg'(ﬂ) .19 "I.l). (B-18)

where 8(.) is the Dirac delt. function. Covariance functions like Eq. (B-18) are characteristic
of non-stationary white noise {26,29). From Eqs. (B-13), (B-14), and (B-18),

Cratto ) me I du it =w) 8,00 ~p) my(u) (8-19)
and -
a3 () = e _ dp [B,h(-w) mylp). (B-20)
Noting that
h =) 31— ) = 2 320 =), (8-21)

it follows from Egs. (B-19) and (B-21) that

Coalt 1) = 3 ed | [ du 12 ~p) me)}. (822

From Egs. (B-17) and (B-22),

Coalts 1) = % 8,0 13} = &y (1) 640, (B-23)
Defining r(r) as
r(1) = Cy 200, 1) loy(Da (D)7, (B-24)
29
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it follows from (B-23) and (B-24) that
r(1) = g (1)/o ;(D).
Taking the expected value of both sides of Eq. (B-1) leads to the result:

() = [ du mylp) bt =),

Taking the time derivative of (B-1), we have
V) =2 = [ du X(u) 8,40 -p).

Taking the expected value of both sides of (B-27), we have
my(t) = f_w du my(u) 8,h (1 =p).
That is,

my(1) = 9, {f_: du my(u) h(l—u)l.

From Eqs. (B-26) and (B-28),
mz(l) - l'.'y(').:

(B-25)

(B-26)

(8-27)

(B-28)

(B-29)

Defining the convolution operator as in Eq. (37a), Eqs. (B-26), (B-17), (B-20), (B-29), and

(B-25) may be written as:
my(r) = h(1) ® my(1),
() = e h¥ (1) ® my(1),
a(1) = el (VP ® m (1),
m, (1) = (1),
and
r(0) = la,(D/a,(1)).

Equations (B-30) - (B-34) are the desired results.
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Appendix C
RELATIONSHIPS BETWEEN FAR, P, and m,

Relationship Between FAR and m,

The complete description of an IRST sensor’s performance under a given set of opera-
tional conditions requires the simultaneous specification of both the Faise Alarm Rate (FAR)
and the Probability of Detection (£)) for a “target” within the sensor’s field of view. However,
both "false alarms” and target! detections are manifested as threshold crossings by the signal pro-
cessor. Thus, the object of this Appendix is to relate the traditionai IRST performance meas-
ures, P, and FAR, to the expected number of threshold crossings m; over prescribed intervals
of time.

It is assumed that the average current my (1) is known® on an interval of time {1| < T/2.

The expected number of threshold crossings on the interval |7|<T/2 is defined as
m,)(0, T). Defining the false alarm rate as the expected number of threshold crossings per
"reference interval” T, the following relationship obtains between FAR and m,:

FAR = (T T) my(0, 7). (C-1)

For ¢xample, if FAR is defined as the average number of faise alarms per week, 7T is set
equal 1o the number of seconds in one week; if FAR is defined as the average number of false
alarms per system dwell time, then 7, is set equal to the dwell time (again expressed in units
of seconds).

It is implicitly assumed in Eq. (C-1) that the scene under observation does not include a
target, so that each threshold crossing that occurs gives rise to a "false alarm.”

Relationship Between P), and m,: First-Order Approximation

Although not as straight-forward as Eq. (C-1), a relationship between P, and m, can aiso
be established.

As prelude 10 the definition of /), a “decision interval® T), is first defined. The interval
T), is presumed to bracket the entire period of time during which *he current ¥ (1) manifests
target-induced fluctuations.

Assuming that a target is present in the scene, the number of threshotd crossings that
occur during the interval T is defined as the integer random variable /. The discrete probabil-
ity density function of Jis denoted as f,{1),

. 0y o~ .
The quantity mig(r) may be specitied ¢ prion, or 1L may be caleulated v terms of the radiance of 4 particutar kack-
ground scenc {as discussed in Appendix A)
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The probability of detection Pp is now defined as the probability that one or more thres-
hold crossings occur during the decision interval:

Pp= 3 /() (C-2)
=l
(The likelihood of a background-induced crossing during T, has been neglected.) Unfor-
tunately, the problem of obtaining a formulation for f, appears to be quite difficult {30]. The
focus of this paper has been on the development of formulations for the expected number of
threshold crossings:

my = E(J) = i:::jf,(f)., (C-3)
In order to establish a relationship between P, andl m,, Eqs. (C-2) and (C-3) are written as;

Po= i) + E 10) (-
and ’

my=£i1) + i‘i 0. (C-5)

Assuming that the probability of two or more threshold crossings is negligible during the deci-
sion interval T, Egs. (C-4) and (C-5) can be estimated as

Pp = f,(1) (C-6)
and
my; = f,(1). (c-7
It follows from (C-6) and (C-7) that
Py =m0, T). (C-8)

According to Eq. (C-8), the expected number of threshold crossings during the dacision inter-
val T, provides a good estimate of the detection probability P, so long as the probabilit: of
two or more crossings during 7, is negligible.

Relationship Between P, and m;: Proposal for a Second-Order Approximation

it appears only reasonable that an improved estimate could be obtained for P, if the vari-
ance o] of J were known in addition to the mean m, of J. It will now be shown how
knowledge of o} can be used to calculate a second-order approximation for £, (compare with
Egs. (C-4) and (C-6)):

Py = (1) + £,(2). (C-9)

Unfortunately, the technique described in this section for calculating the second-order
approximation to P;, cannot be implemented until a formulation for o} is developed analagous
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r to Eq. (67) for m,. In this connection, it is noted that Bendat has derived an equation for the
i crossing count variance of stationary processes [31] His result (cf. also Ref. 30) is far more
21 complicated than the analagous Eqs. (8) and (9) for m,. Thus, a generalization of Bendat’s
§ result for o} to the case of nonstationary processes and stochastic threshold functions may
%‘ prove to be a difficult problem. Nonetheless, it is now assumed that a formulation for o} can
] A be obtained, analagous to the development for m, as noted above and found in the main text,
¥ Analagous to Eq. (C-3),
: % o} ={Y i f,(j)] -mj. (C-10)
i* f=l
3
§ Substituting Eq. (C-3) into Eq. (C-10) leads 10 the following expression for « J:
) af = £i(D) [1-f,<n] +46,2) [x-f,m -f,(z)] + E, (-1
4
whete
o8 o o 2
&=%r-1[rw+y@| - 2//1 . (€-12)
Y i=3 =3 1=-3
f Assuming that the probability of three or more threshold crossings is negligible during the deci-
; sion interval, Eqs. (C-3) and (C-11) are approximated as:
m; = f(1) + 2/,(2) (C-13)
and

o] = £,(1) [1 -f,(nl + 4£,(2) [1-—f,m -f,(Z)I.; (C-14)

Calculation of m, from Egs. (67) and (70), and an analagous calculation for o}, enables Egs.
(C-13) and (C-14) to be solved for approximations to f,(1) and f,(2). The second-order
approximation (o P, is then obtained by means of Eq. (C-9).

if Eq. (C-9) is found to yield an appreciably different result than Eq. (C-6), third-order or
even higher-order approximations to P, may be required; otherwise, the first-order Eq. (C-6)

' is then verified as a good approximation for P,
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